Abstract:Graphical User Interface (GUI) agent is pivotal to advancing intelligent human-computer interaction paradigms. Constructing powerful GUI agents necessitates the large-scale annotation of high-quality user-behavior trajectory data (i.e., intent-trajectory pairs) for training. However, manual annotation methods and current GUI agent data mining approaches typically face three critical challenges: high construction cost, poor data quality, and low data richness. To address these issues, we propose M$^2$-Miner, the first low-cost and automated mobile GUI agent data-mining framework based on Monte Carlo Tree Search (MCTS). For better data mining efficiency and quality, we present a collaborative multi-agent framework, comprising InferAgent, OrchestraAgent, and JudgeAgent for guidance, acceleration, and evaluation. To further enhance the efficiency of mining and enrich intent diversity, we design an intent recycling strategy to extract extra valuable interaction trajectories. Additionally, a progressive model-in-the-loop training strategy is introduced to improve the success rate of data mining. Extensive experiments have demonstrated that the GUI agent fine-tuned using our mined data achieves state-of-the-art performance on several commonly used mobile GUI benchmarks. Our work will be released to facilitate the community research.
Abstract:Recent coding agents can generate complete codebases from simple prompts, yet existing evaluations focus on issue-level bug fixing and lag behind end-to-end development. We introduce ProjDevBench, an end-to-end benchmark that provides project requirements to coding agents and evaluates the resulting repositories. Combining Online Judge (OJ) testing with LLM-assisted code review, the benchmark evaluates agents on (1) system architecture design, (2) functional correctness, and (3) iterative solution refinement. We curate 20 programming problems across 8 categories, covering both concept-oriented tasks and real-world application scenarios, and evaluate six coding agents built on different LLM backends. Our evaluation reports an overall acceptance rate of 27.38%: agents handle basic functionality and data structures but struggle with complex system design, time complexity optimization, and resource management. Our benchmark is available at https://github.com/zsworld6/projdevbench.
Abstract:Cytoarchitectonic mapping provides anatomically grounded parcellations of brain structure and forms a foundation for integrative, multi-modal neuroscience analyses. These parcellations are defined based on the shape, density, and spatial arrangement of neuronal cell bodies observed in histological imaging. Recent works have demonstrated the potential of using deep learning models toward fully automatic segmentation of cytoarchitectonic areas in large-scale datasets, but performance is mainly constrained by the scarcity of training labels and the variability of staining and imaging conditions. To address these challenges, we propose an interactive cytoarchitectonic parcellation framework that leverages the strong transferability of the DINOv3 vision transformer. Our framework combines (i) multi-layer DINOv3 feature fusion, (ii) a lightweight segmentation decoder, and (iii) real-time user-guided training from sparse scribbles. This design enables rapid human-in-the-loop refinement while maintaining high segmentation accuracy. Compared with training an nnU-Net from scratch, transfer learning with DINOv3 yields markedly improved performance. We also show that features extracted by DINOv3 exhibit clear anatomical correspondence and demonstrate the method's practical utility for brain region segmentation using sparse labels. These results highlight the potential of foundation-model-driven interactive segmentation for scalable and efficient cytoarchitectonic mapping.
Abstract:Robots need task planning methods to generate action sequences for complex tasks. Recent work on adversarial attacks has revealed significant vulnerabilities in existing robot task planners, especially those built on foundation models. In this paper, we aim to address these security challenges by introducing PROTEA, an LLM-as-a-Judge defense mechanism, to evaluate the security of task plans. PROTEA is developed to address the dimensionality and history challenges in plan safety assessment. We used different LLMs to implement multiple versions of PROTEA for comparison purposes. For systemic evaluations, we created a dataset containing both benign and malicious task plans, where the harmful behaviors were injected at varying levels of stealthiness. Our results provide actionable insights for robotic system practitioners seeking to enhance robustness and security of their task planning systems. Details, dataset and demos are provided: https://protea-secure.github.io/PROTEA/




Abstract:Tropical Cyclone (TC) estimation aims to accurately estimate various TC attributes in real time. However, distribution shifts arising from the complex and dynamic nature of TC environmental fields, such as varying geographical conditions and seasonal changes, present significant challenges to reliable estimation. Most existing methods rely on multi-modal fusion for feature extraction but overlook the intrinsic distribution of feature representations, leading to poor generalization under out-of-distribution (OOD) scenarios. To address this, we propose an effective Identity Distribution-Oriented Physical Invariant Learning framework (IDOL), which imposes identity-oriented constraints to regulate the feature space under the guidance of prior physical knowledge, thereby dealing distribution variability with physical invariance. Specifically, the proposed IDOL employs the wind field model and dark correlation knowledge of TC to model task-shared and task-specific identity tokens. These tokens capture task dependencies and intrinsic physical invariances of TC, enabling robust estimation of TC wind speed, pressure, inner-core, and outer-core size under distribution shifts. Extensive experiments conducted on multiple datasets and tasks demonstrate the outperformance of the proposed IDOL, verifying that imposing identity-oriented constraints based on prior physical knowledge can effectively mitigates diverse distribution shifts in TC estimation.Code is available at https://github.com/Zjut-MultimediaPlus/IDOL.
Abstract:Task planning and motion planning are two of the most important problems in robotics, where task planning methods help robots achieve high-level goals and motion planning methods maintain low-level feasibility. Task and motion planning (TAMP) methods interleave the two processes of task planning and motion planning to ensure goal achievement and motion feasibility. Within the TAMP context, we are concerned with the mobile manipulation (MoMa) of multiple objects, where it is necessary to interleave actions for navigation and manipulation. In particular, we aim to compute where and how each object should be placed given underspecified goals, such as ``set up dinner table with a fork, knife and plate.'' We leverage the rich common sense knowledge from large language models (LLMs), e.g., about how tableware is organized, to facilitate both task-level and motion-level planning. In addition, we use computer vision methods to learn a strategy for selecting base positions to facilitate MoMa behaviors, where the base position corresponds to the robot's ``footprint'' and orientation in its operating space. Altogether, this article provides a principled TAMP framework for MoMa tasks that accounts for common sense about object rearrangement and is adaptive to novel situations that include many objects that need to be moved. We performed quantitative experiments in both real-world settings and simulated environments. We evaluated the success rate and efficiency in completing long-horizon object rearrangement tasks. While the robot completed 84.4\% real-world object rearrangement trials, subjective human evaluations indicated that the robot's performance is still lower than experienced human waiters.




Abstract:Generative Engine Marketing (GEM) is an emerging ecosystem for monetizing generative engines, such as LLM-based chatbots, by seamlessly integrating relevant advertisements into their responses. At the core of GEM lies the generation and evaluation of ad-injected responses. However, existing benchmarks are not specifically designed for this purpose, which limits future research. To address this gap, we propose GEM-Bench, the first comprehensive benchmark for ad-injected response generation in GEM. GEM-Bench includes three curated datasets covering both chatbot and search scenarios, a metric ontology that captures multiple dimensions of user satisfaction and engagement, and several baseline solutions implemented within an extensible multi-agent framework. Our preliminary results indicate that, while simple prompt-based methods achieve reasonable engagement such as click-through rate, they often reduce user satisfaction. In contrast, approaches that insert ads based on pre-generated ad-free responses help mitigate this issue but introduce additional overhead. These findings highlight the need for future research on designing more effective and efficient solutions for generating ad-injected responses in GEM.
Abstract:Bioacoustic sound event detection (BioSED) is crucial for biodiversity conservation but faces practical challenges during model development and training: limited amounts of annotated data, sparse events, species diversity, and class imbalance. To address these challenges efficiently with a limited labeling budget, we apply the mismatch-first farthest-traversal (MFFT), an active learning method integrating committee voting disagreement and diversity analysis. We also refine an existing BioSED dataset specifically for evaluating active learning algorithms. Experimental results demonstrate that MFFT achieves a mAP of 68% when cold-starting and 71% when warm-starting (which is close to the fully-supervised mAP of 75%) while using only 2.3% of the annotations. Notably, MFFT excels in cold-start scenarios and with rare species, which are critical for monitoring endangered species, demonstrating its practical value.
Abstract:In e-commerce, user representations are essential for various applications. Existing methods often use deep learning techniques to convert customer behaviors into implicit embeddings. However, these embeddings are difficult to understand and integrate with external knowledge, limiting the effectiveness of applications such as customer segmentation, search navigation, and product recommendations. To address this, our paper introduces the concept of the customer persona. Condensed from a customer's numerous purchasing histories, a customer persona provides a multi-faceted and human-readable characterization of specific purchase behaviors and preferences, such as Busy Parents or Bargain Hunters. This work then focuses on representing each customer by multiple personas from a predefined set, achieving readable and informative explicit user representations. To this end, we propose an effective and efficient solution GPLR. To ensure effectiveness, GPLR leverages pre-trained LLMs to infer personas for customers. To reduce overhead, GPLR applies LLM-based labeling to only a fraction of users and utilizes a random walk technique to predict personas for the remaining customers. We further propose RevAff, which provides an absolute error $\epsilon$ guarantee while improving the time complexity of the exact solution by a factor of at least $O(\frac{\epsilon\cdot|E|N}{|E|+N\log N})$, where $N$ represents the number of customers and products, and $E$ represents the interactions between them. We evaluate the performance of our persona-based representation in terms of accuracy and robustness for recommendation and customer segmentation tasks using three real-world e-commerce datasets. Most notably, we find that integrating customer persona representations improves the state-of-the-art graph convolution-based recommendation model by up to 12% in terms of NDCG@K and F1-Score@K.
Abstract:Robots need task planning methods to achieve goals that require more than individual actions. Recently, large language models (LLMs) have demonstrated impressive performance in task planning. LLMs can generate a step-by-step solution using a description of actions and the goal. Despite the successes in LLM-based task planning, there is limited research studying the security aspects of those systems. In this paper, we develop Robo-Troj, the first multi-trigger backdoor attack for LLM-based task planners, which is the main contribution of this work. As a multi-trigger attack, Robo-Troj is trained to accommodate the diversity of robot application domains. For instance, one can use unique trigger words, e.g., "herical", to activate a specific malicious behavior, e.g., cutting hand on a kitchen robot. In addition, we develop an optimization method for selecting the trigger words that are most effective. Through demonstrating the vulnerability of LLM-based planners, we aim to promote the development of secured robot systems.